
FLIP: A Framework for Leveraging eBPF to Augment WiFi
Access Points and Investigate Network Performance
Jaykumar Sheth

Internet of Things Research Lab
Santa Clara University

Santa Clara, USA
jsheth@scu.edu

Vikram Ramanna
Internet of Things Research Lab

Santa Clara University
Santa Clara, USA

vramanna@scu.edu

Behnam Dezfouli
Internet of Things Research Lab

Santa Clara University
Santa Clara, USA
bdezfouli@scu.edu

ABSTRACT
Monitoring WiFi networks is essential to gain insight into the net-
work operation and developmethods capable of reacting to network
dynamics. However, research and development in this field are hin-
dered because there is a lack of a framework that can be easily
extended to collect various types of monitoring data from the WiFi
stack. In this paper, we propose FLIP, a framework for leveraging
eBPF to augment WiFi access points and investigate the perfor-
mance of WiFi networks. Using this framework, we focus on two
important aspects of monitoring the WiFi stack. First, considering
the high delay experienced by packets at access points, we show
how switching packets from the wired interface to the wireless
interface can be monitored and timestamped accurately at each
step. We build a testbed using FLIP access points and investigate the
factors affecting packet delay experienced in access points. Second,
we present a novel approach that allows access points to track the
duty-cycling pattern and energy consumption of their associated
stations accurately and without the need for any external energy
measurement tools. We validate the high energy measurement ac-
curacy of FLIP by empirical experiments and comparisons against
a commercial tool.

CCS CONCEPTS
•Networks→Network performance evaluation;Wireless lo-
cal area networks; Programming interfaces; Network monitoring;
Network management; Programmable networks; Network protocols;
Wireless access points, base stations and infrastructure.

KEYWORDS
802.11; monitoring; delay; packet switching; energy; duty cycle.

ACM Reference Format:
Jaykumar Sheth, Vikram Ramanna, and Behnam Dezfouli. 2021. FLIP: A
Framework for Leveraging eBPF to Augment WiFi Access Points and Inves-
tigate Network Performance. In Proceedings of the 19th ACM International
Symposium on Mobility Management (MobiWac ’21), November 22–26, 2021,
Alicante, Spain. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3479241.3486700

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiWac ’21, November 22–26, 2021, Alicante, Spain
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9079-8/21/11. . . $15.00
https://doi.org/10.1145/3479241.3486700

1 INTRODUCTION
It is estimated that by 2022 about 75% of Internet traffic will be
exchanged over WiFi links [1]. Multiple observations justify the
broad adoption of WiFi. First, compared to cellular networks, WiFi
operates in unlicensed bands, it is relatively cheaper, and does not
require a user subscription. Second, compared to other wireless
technologies such as Bluetooth and ZigBee, the considerably higher
data rate of WiFi is essential for multimedia communication and
high-rate sensing applications. For example, surveillance cameras
such as Ring and Nest use WiFi, and the communication rate of
WiFi can address the bandwidth demand of ultra-high-rate sensing
systems used in industrial applications [17]. Third, the production
cost of WiFi stations has reduced to less than $5 in recent years,
and this has enabled the broad deployment of WiFi Access Points
(APs) that provide a low-cost and easy-to-use infrastructure for
wireless connectivity. The cost reduction has also facilitated the
adoption of this standard in a variety of smart home devices, from
voice assistants running the Linux operating system to resource-
constraint devices such as smart plugs that run different types of
Real-Time Operating Systems (RTOSs). In the rest of this paper, for
consistency with the 802.11 standards, we use the term ‘station’ to
refer to any sort of devices associated and served by a WiFi AP.

With the densification of APs and the heterogeneity of stations
and applications served by these APs, understanding and enhanc-
ing the performance of these networks becomes more critical. For
example, nowadays, WiFi APs used in residences and campuses
are used to serve both regular user stations such as smartphones
and laptops as well as resource-constrained IoT stations such as
cameras, thermostats, and smoke detectors. In such environments,
however, the traffic of regular stations adversely affects the commu-
nication timeliness and energy consumption of IoT stations. These
adverse effects are primarily because the MAC layer of 802.11 (n,
ac, and ax) can only differentiate between four classes of service:
voice, video, best-effort, and background, where voice and video
access category traffic are statistically prioritized over best-effort
and background access category traffic. On top of this MAC layer
sits the pfifo_fast queuing discipline—the Linux’s default queuing
discipline (qdisc)—which by default has three bands to differentiate
between three classes of service [41]. On the other hand, parameters
such as interference and AP’s traffic intensity affect the delivery
delay of downlink traffic. The power-saving mechanisms of the
802.11 standards present highly diverse behavior subject to traffic
pattern and station type, and selecting power-saving parameters
(such as wake-up period) are entirely left to the system developer.

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

117

https://doi.org/10.1145/3479241.3486700
https://doi.org/10.1145/3479241.3486700
https://doi.org/10.1145/3479241.3486700
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3479241.3486700&domain=pdf&date_stamp=2021-11-22

Despite its importance, understanding the operation of the WiFi
stack in various settings is a challenging undertaking for the re-
search community. The WiFi networking stack is complex and
includes multiple layers across the Wireless Network Interface
Card (WL-NIC), driver, Linux kernel modules, and user-space dae-
mons. Although there exist tools that provide visibility into some
of these layers, the performance and range of visibility of these
tools are far from what is needed to analyze these networks and
design solutions for performance enhancement effectively. Due to
this shortcoming, a large number of existing works rely on simula-
tion. Also, when high-rate monitoring is necessary, existing works
rely on packet capture and static data analysis [2, 32, 46]. Another
category of works relies on tools that have been primarily designed
for infrequent monitoring and configuration [26, 30]. For example,
Linux-based tools such as iw and ethtool can be used to collect
some of the operational data from the WiFi stack; however, the
sampling rate and efficiency of these tools are far below what is
required for high-rate monitoring.

In this paper, we present FLIP, a framework to augment the
networking stack of Linux-based WiFi devices using the eBPF tech-
nology to collect a wide range of monitoring data that can be used
for both network operation investigation as well as developing
methods that react to network dynamics. We first study the opera-
tion of the WiFi stack and then show how eBPF can be leveraged
to interface with the components of the WiFi stack to monitor
various aspects of network operation. We focus on two aspects of
network performance analysis: First, since existing studies reveal
the considerable effect of packet switching delay in APs [31, 43], we
investigate and monitor the impact of queuing and channel access
contention on the delay of switching packets from the AP’s wired
interface to the wireless interface. We build a testbed using the
FLIP framework and study how various parameters such as traffic
access category and the number of stations affect the switching
delay. Second, we propose a novel method to track the duty-cycle
pattern and energy consumption of stations. To this end, we rely on
the fact that stations need to inform their associated AP whenever
they change their power mode (sleep to awake and vice-versa), as
mandated by the 802.11 power-save mechanisms. Therefore, moni-
toring the driver’s pertaining data structures allows for tracking
stations’ duty cycle patterns. This approach eliminates the need for
external power measurement tools when studying the energy effi-
ciency of resource-constrained stations. To show the effectiveness
of this approach, we rely on empirical measurements and compare
the accuracy of FLIP with a commercial power monitor. Our results
show that the error of FLIP is 6% compared to a commercial power
monitoring tool. We provide FLIP as a publicly available tool that
can be implemented on off-the-shelf APs1.

The rest of this paper is organized as follows. We present the
overall architecture of FLIP in Section 2. In Section 3, we first explain
the approach employed to monitor packet switching delay from
the wired interface to the wireless interface, and then present an
empirical analysis of this delay. In Section 4 we show how FLIP can
perform passive energy monitoring of stations. Section 5 overviews

1FLIP implementation can be found at the following link:
https://github.com/SIOTLAB/FLIP

Table 1: Summary of key notations and abbreviations

Notation/Abbreviation Meaning
AP Access Point
NSM Network State Monitor
NSM-U Network State Monitor in User-space
NSM-K Network State Monitor in Kernel-space
CU Channel Utilization
PSM Power Save Mode
APSM Adaptive Power Save Mode
TIM Traffic Indication Map

WL-NIC Wireless Network Interface Card
W-NIC Wired Network Interface Card
UL Uplink
DL Downlink
Ψ Station Awake Time
E Energy Consumed by Station

hostapd

eBPF Byte-code

In-Kernel VM

nl80211

hostapd
logs

LLVM-Clang Compiler

eBPF C Program

eBPF Native-code
(NSM-K)

BPF
syscall

JIT Compiler

eBPF
Maps

kp
rob

es

Eve
nts

WiFi Driver

mac80211

W-NIC

Bridge

WL-NIC
HW Queues

kprobes

Events

User-Space
Kernel-Space

PHY

qdisc

User-
Space

SW Queues
Kernel-
Space

Networking StackNetwork State Monitor
(NSM-U)

Figure 1: The FLIP architecture for augmenting APs. The
right side presents the network stack, and the left side shows
the Network State Monitor (NSM) module that relies on
eBPF to interact with the network stack. The dotted arrows
denote the collection of monitoring data. The solid arrows
represent the path taken by data packets (wired-to-wireless
switching data-path).

the related work. We conclude the paper in Section 6. Table 1 sum-
marizes the key notations and abbreviations used in this paper.

2 SYSTEM ARCHITECTURE
The WiFi stack of commercial, off-the-shelf APs includes compo-
nents that span WL-NIC, driver, Linux’s kernel-space modules, and
user-space daemons. In this section, we present the architecture of
these APs and then explain how eBPF can be leveraged to enhance
visibility into the WiFi stack.

2.1 AP’s Networking Stack
Apart from switching packets between the Wired Network Inter-
face Card (W-NIC) andWL-NIC, an AP is responsible for operations
such as beacon generation and handling the association and disas-
sociation of stations. These functionalities are enabled by several
components including hostapd, wpa_supplicant, mac80211, dri-
ver, qdisc, and WL-NIC, as illustrated in the right-half of Figure
1. hostapd is a user-space daemon that handles authentication,
association, and disassociation of stations. To generate control and

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

118

management frames, hostapd configures mac80211 and driver via
the netlink (nl80211) library. The mac80211 module provides a
unified interface between the driver, qdisc, and hostapd. The
mac80211 module also administers the MAC layer management
entity (MLME) functions for SoftMAC drivers; sample functions
are building MAC headers and assigning sequence numbers. Soft-
MAC drivers implement a part of layer-2 functionalities in software
utilizing the host system’s hardware and software resources. On
the other hand, only time-critical MAC functions, such as man-
aging timeouts, inter-frame spacing, and channel access backoff,
are implemented in the WL-NIC. Currently, most commercial WL-
NICs rely on the SoftMAC architecture [6], especially considering
the ease of updating. Similarly, in this paper, we assume the AP’s
driver is based on the SoftMAC architecture. Finally, the driver is
responsible for packet aggregation and transferring them to the
WL-NIC for transmission on the channel.

2.2 Leveraging eBPF for Collecting Monitoring
Data from the Kernel

The left-half of Figure 1 illustrates the extended Berkeley Packet
Filter (eBPF) infrastructure. eBPF facilitates runtime patching of
the kernel image by enabling the execution of user-defined logic
when a system call or a kernel function is executed. eBPF programs
(written in C) are compiled into byte code utilizing the LLVM-clang
compiler. This byte code is executed in an in-kernel virtual machine
and thus, reduces context-switching overhead. eBPF programs are
attached to probe events (i.e., kprobe or a tracepoint) that mark
as the instantiating points for the execution of user-defined logic.
Tracepoints are required to be manually inserted into the kernel
code by utilizing the TRACE_EVENT() macro. Whereas, kprobes are
automatically defined in kernel’s symbol table (/proc/kallsyms)
along with their virtual addresses for almost all system calls and
kernel functions that have been declared as neither inline nor static.
Hence, we utilize kprobes because it does not require any modifi-
cations to the kernel. For a particular function (or a system call)
in the kernel, BPF system calls replace the instruction at the ad-
dress of the function’s execution with the breakpoint instruction
(e.g., int3 for x86 platforms). Whenever this breakpoint is hit, the
context of the function is saved and the user-defined logic in the
eBPF program is invoked. Once the execution of user-defined logic
completes, kprobe executes the instruction that was replaced by the
breakpoint and continues the kernel’s normal execution path. eBPF
also allows accessing the kernel functions’ arguments from user-
space via eBPF data structures, a.k.a., eBPF Maps. eBPF Maps are
transferred to the user-space via a ring buffer and can be accessed
by high-level languages such as C, Python, and Lua.

The Network State Monitor (NSM) is composed of two com-
ponents: NSM user-space (NSM-U) and NSM kernel-space (NSM-K).
These components utilize eBPF to log the timestamps of the kernel
functions that are invoked as packets traverse the stages of the
networking stack. Furthermore, the NSM-K module also logs the
state of the function arguments when the function is called for
execution and transfers the monitored data to NSM-U via eBPF
Maps. In the subsequent sections, we will elaborate on this method
of obtaining monitoring data from the kernel.

3 DELAY ANALYSIS OF SWITCHING
PACKETS FROM THEWIRED INTERFACE
TO THEWIRELESS INTERFACE

Once a packet is received over the wired interface of an AP, the
packet needs to pass through multiple queuing disciplines before
contending for channel access. Specifically, the packet will need to
contendwith other flows both internally in the AP’s queues and also
physically during the CSMAprocess. Investigating packet switching
delay from the W-NIC to WL-NIC is particularly difficult because
it depends on various factors including the AP’s traffic intensity,
queuing disciplines used at various layers, airtime utilization by
other APs and stations, and access category of flows. Recent studies
show that the delay experienced at APs is more than 60% of the total
communication delay between a station and server, and this delay is
between 20ms to 250ms, depending on traffic congestion [13, 30, 31,
40]. The queuing disciplines employed by the Linux’s qdisc, driver
and NIC further complicate investigating and understanding the
causes of this delay [13, 14, 44]. Vendors heuristically design device
drivers’ packet scheduling algorithms [14, 44], and the operation
of non-open-source drivers is unknown.

In this section, we present a novel approach towards measuring
and monitoring packet delay from the instance it arrives on the
AP’s W-NIC until it is transmitted successfully by the WL-NIC. We
then utilize this framework for packet delivery delay analysis.

3.1 Power Saving Methods of 802.11
An access point cannot deliver packets to an associated station in
sleep mode. Therefore, the amount of time spent by packets in the
AP is affected by the power-saving mode employed by the station.

Two of the most widely adopted power-save mechanisms are
Power Save Mode (PSM) and Adaptive-Power Save Mode (APSM).
With PSM, each AP periodically (every 102.4 ms) sends a beacon
packet, and stations wake up at beacon instances to check if the
Traffic Indication Message (TIM) bit in a beacon is set. If the TIM
bit is set, the station sends a PS-Poll packet to indicate its transition
to the awake state and to retrieve each of the queued packets from
the AP. The station immediately transitions to sleep mode if the
AP has no more buffered packets. The packets that arrive at the AP
after the station’s transition into sleep mode are queued until the
next beacon instance. For example, in a request-response scenario,
whenever a station sends an uplink request to a server via the AP,
the response received from the server will need to wait until the
next beacon announcement. For delay-sensitive communication,
the APSM method allows the station to remain in an awake state
for a fixed duration, known as tail-time, after each packet exchange
with the AP. Considering the request-response scenario, if the
response packet arrives before the tail-time expiry, the packet is
immediately delivered to the station.

3.2 FLIP’s Methodology for Monitoring
Wired-to-wireless Switching Path

The right-half of Figure 1 illustrates the modules along the path
taken between the W-NIC to WL-NIC. These delays are illustrated
in Figure 2 and explained as follows.

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

119

AP Station

t1

t2

Beacon Announcement t3

UL Null Packet (wake up)

DL Packet Delivery over WL-NIC t6

t4

t5

�a

�b

�c

�d

UL Null Packet (sleep) t7

�e

Station
Awake

Packet Arrival on W-NIC

Enqueued in SW Queues

Enqueued in HW Queues

Cumulative
Delay

�f

Switching
the Packet
from W-NIC
to WL-NIC

Figure 2: Delay components of a data packet being switched
from the wired interface to the wireless interface. The sta-
tion uses the APSM energy-efficiency mode.

3.2.1 Queuing Disciplines (qdisc). Whenever a packet arrives on
theAP’s wired interface at time 𝑡1, after theMAC address table entry
lookup, the packet is transferred to the network stack. Residing
between the bridge and the WiFi subsystem, qdisc implements
a programmable set of queues (a.k.a., bands), enabling a flexible
traffic control framework. For example, every network interface is
assigned a qdisc, which is pfifo_fast by default [13], consisting of
three bands. The access category of each packet is inferred from
the Type of Service (ToS) field in the IP header, then the packet is
enqueued in one of these bands according to qdisc’s priority map.
For example, pfifo_fast qdisc’s priority map specifies that a voice
packet is enqueued in the first band, a video packet is enqueued
in the second band, and background and best-effort packets are
enqueued in the third band. A packet is dequeued from a band
only when its higher-priority bands are empty. For example, unless
the first band (corresponding to voice) is empty, packets in the
second band (corresponding to video) are not dequeued. Hence,
the queuing delay experienced by a packet enqueued in the lowest-
priority queue depends on the current utilization level of that queue
as well as the utilization of higher-priority queues.

3.2.2 mac80211. Packets are dequeued from the qdisc queues and
handed over to the WiFi networking subsystem, whenever lower
layer queues are not full.2 Specifically, if there is available space
in the mac80211 module, packets are dequeued from qdisc and
inserted into mac80211 queues (at 𝑡2), known as software (SW)
Queues. For each associated station, the SWQueues include a queue
per access category. Each queue is resembled by an ieee80211_txq
structure. The mac80211 module performs the following functions
whenever a packet is enqueued in its SW Queues at 𝑡2. First, in case
the destination station is in low-power sleep state, the ieee80211_-
beacon_add_tim() function sets the TIM bit inside the next beacon
to be sent at 𝑡3. Second, the driver is notified of the pending pack-
ets via drv_wake_tx_queue() function. Finally, ieee80211_sta_-
register_airtime structure updates the airtime fairness metrics
maintained for each station. Recent works [14] show that qdisc
can cause latencies of higher than 100 ms due to increased queue
sizes (a.k.a., bufferbloat). To remedy this problem, they propose

2qdiscs such as Token Bucket Filter (TBF) and Common Applications Kept Enhanced
(CAKE) allow to specify the maximum packet dequeue rate.

to disable qdisc, and instead, an integrated traffic control mecha-
nism (commonly known as FQ_CODEL) based on airtime-fairness
of associated stations has been proposed. Several WiFi drivers (e.g.,
ath9k, ath10k, rtl8723) use this approach and employ a round-robin
dequeue scheduling mechanism for each intermediate SW Queue
based on the FQ_CODEL algorithm. This ensures that each station
is provided with a fair-share of the channel’s airtime.

3.2.3 Driver and WL-NIC. The station conveys its transition into
awake mode by sending a Null packet that its power-save-bit is ‘0’.
At this point, the driver dequeues the packets from the SW Queues
and passes them to the WL-NIC. WL-NIC includes five hardware
(HW) queues. Four of these queues correspond to the voice, video,
best-effort, and background access categories, and the last queue is
used for management and control packets. Each queue is associated
with a Distributed Coordination Function (DCF) unit that contends
for channel access according to the Enhanced Distributed Channel
Access (EDCA) parameters specified by the 802.11e amendment.
These contention parameters increase the probability of longer wait
times for lower access category queues, prioritizing higher access
categories. The voice and background access categories have the
highest and lowest priorities. Each DCF unit contends with other
stations, as well as the DCF queues from the same station. The latter
contention is known as an internal or virtual collision. In case of
internal collision, the higher-priority access category is allowed
to access the channel. Once a HW Queue obtains access to the
channel for transmission, it transmits the packet to the station and
generates an interrupt that triggers the dequeuing of packets from
the SW Queues.

3.3 Empirical Evaluation of Wired-to-wireless
Switching Delay

In this section, we use the FLIP framework for monitoring the
delays across the stages of the WiFi networking stack.

The testbed setup includes an IoT station that utilizes the APSM
energy efficiency mechanism. The station is associated with a FLIP
AP. The testbed includes additional stations to introduce concur-
rent network traffic. The intensity of the traffic generated by these
stations is represented as Channel Utilization (CU) in the results. CU
is defined as 𝑑𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑑𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , where 𝑑𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is the time duration
the radio sensed a signal higher than a pre-specified threshold value
during time duration 𝑑𝑜𝑣𝑒𝑟𝑎𝑙𝑙 . A workstation (connected to the AP
via the wired interface) sends a ping packet to the IoT station per
second. This packet belongs to the best-effort access category. We
refer to this traffic as the IoT traffic. We define cumulative delay
as the duration between the time instance a packet arrives at the
W-NIC of the AP and the time instance it is successfully transmit-
ted over the WL-NIC. Referring to Figure 2, we also monitor delay
components 𝛿𝑎, 𝛿𝑏 , 𝛿𝑐 , 𝛿𝑑 , 𝛿𝑒 , defined as follows:

– 𝛿𝑎 : The time spent by a packet in qdisc,
– 𝛿𝑏 : The interval between the insertion of a packet into the SW
Queues and the next beacon announcement,

– 𝛿𝑐 : The time duration between the beacon announcement with
TIM bit set and the NULL packet received by the AP,

– 𝛿𝑑 : The delay incurred in mac80211’s SWQueues, when the HW
Queues are full,

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

120

Figure 3: Delay components of wired-to-wireless switching delay in the presence of concurrent traffic. (a) Downlink (DL)
video concurrent traffic. (b) Downlink (DL) best-effort concurrent traffic. (c) Uplink (UL) video concurrent traffic. (d) Uplink
(UL) best-effort concurrent traffic.

– 𝛿𝑒 : The amount of time spent in theHWQueueswhen contending
for channel access.

It is worth noting that with the recent improvements in Linux
wireless networking, some drivers bypass the qdisc module. The
ath9k driver used by theAP in our testbed implements this approach.
Sincewe observed that𝛿𝑎 was always less than 1ms, we do not show
𝛿𝑎 in the empirical evaluation results of this paper. The duration
between the time instance the packet was enqueued in the SW
Queues and the beacon announcement with the station’s TIM bit set
(i.e., 𝛿𝑏) depends on the packet arrival time and the time remaining
till the next beacon announcement.

Figure 3 presents the components of wired-to-wireless switching
delay in the presence of various CU levels. We consider the impact
of different types of CU:
– Downlink (DL) traffic: when the traffic direction is from the AP
to the stations

– Uplink (UL) traffic: when the traffic direction is from the stations
to the AP

– Access category of the traffic: video and best-effort
Our results show that the cumulative delay of IoT traffic increases

as CU intensifies. However, we observed that for a particular CU
intensity, the values of packet delivery delays vary depending on
the access category and direction of the concurrent traffic. As Figure
3(b) shows, the median cumulative delay in the presence of 90% best-
effort CU is 27 ms, whereas, as the results of Figure 3(a) suggest, the
cumulative delay with 90% video CU is 61ms (i.e., 125% higher). This
behavior is justified by the 802.11e amendment, which specifies the
channel access contention parameters for the four access categories.
Compared to the best-effort access category, the 802.11e amendment
allows faster, more probable access of video HW Queue to the
channel. Additionally, every time the video HW Queue grabs the
channel, it can use the channel for 3.008 ms continuously; whereas,
the best-effort HW Queue can send one packet per channel access.
Because of these two reasons, IoT traffic (best-effort) spends more
time in the HW Queue when competing with video traffic. When
the concurrent traffic type is best-effort too, both traffic types can
equally access the channel, thereby the delay drops. However, once
the best-effort HW Queue is full due to the higher traffic rate of
concurrent traffic, the dequeuing of packets from SW Queues is

halted. Thus, the waiting times of the packet in the best-effort SW
Queues increase as well. This is observed in Figure 3 (b) as we
increase CU. The waiting duration in the SW Queue contributes
to about 10% of the cumulative delay when best-effort concurrent
traffic consumes 90% of the channel.

We also observe that 𝛿𝑐 accounts for a significant portion of
the total delay. Specifically, as channel contention due to UL or
DL traffic escalates, this delay increases too. This is because Null
packets are regular data packets belonging to best-effort access
category, and therefore, they need to contend with concurrent
traffic. Additionally, even when the CU level is low, Null packets
are sent at least 7 ms after the beacon. We observed that this is due
to the guard times employed by the station around each beacon
reception instance (these guard times have been identified in our
previous work [33]).

Figures 3 (c) and (d) show that, when the concurrent traffic is
UL, increasing the number of stations results in a higher delay of
IoT traffic. From the CSMA point of view, this is because increasing
the number of stations reduces the chance of winning the channel
by the IoT station. We observe a similar trend when the concurrent
traffic is DL and the AP is the only device transmitting packets.
As explained in Section 3.2.3, the stations compete internally to
gain channel access; therefore, increasing the number of stations
receiving concurrent traffic reduces the chance of channel access
for IoT traffic.

Discussion. In this section, we assumed that the IoT station
wakes up at all the beacon instances. However, in [33] we showed
that stations could skip some beacons instances and lower the
overhead of beacon reception. This is achieved by using a listen
interval value, denoted as 𝜏 , that represents the number of beacons
skipped between wake-ups. For 𝜏 > 1, the time spent in SW Queues
is highly affected. For a station using listen interval 𝜏 , assume
the beacon instances during the listen interval are [𝑡𝑘 , ..., 𝑡𝑘+𝜏].
When a ping destined to the IoT station arrives at the AP’s W-NIC
during interval [𝑡𝑘 , 𝑡𝑘+1), 𝜏 beacon packets must be sent before
the next wake-up instance of the station. Similarly, if the packet
arrives during interval [𝑡𝑘+1, 𝑡𝑘+2), the AP needs to send 𝜏 − 1
beacon packets. Therefore, the expected number of beacons sent
until station wake-up is 1

𝜏 (𝜏 + (𝜏 − 1) + ... + 2+ 1) = (𝜏 + 1)/2, when

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

121

𝜏 > 1. The expected wake up delay is computed as 102.4× (𝜏 + 1)/2
ms and maximum wake up delay is 𝜏 × 102.4 ms, for 𝜏 > 1.

4 PASSIVE MONITORING OF STATIONS’
ENERGY CONSUMPTION

In this section, we present a novel method to passively track the
duty cycle and energy consumption of stations by the AP. Specifi-
cally, instead of using additional hardware to measure the energy
consumption of stations, we collect the duty cycle pattern of sta-
tions from their associated AP’s driver.

4.1 FLIP’s Methodology for Monitoring the
Energy Consumption of Stations

To monitor the duty cycle of stations, we rely on the observation
that stations inform the AP whenever their WiFi subsystem transi-
tions to another mode (sleep to awake and vice-versa). With PSM,
the station sends a PS-Poll packet to the AP to express its transition
into awake mode. The station retrieves queued packets until the
more-data field is set to ‘0’ in the data packet sent by the AP, and
then transitions into sleep mode. With APSM, the station can wake
up or transition into sleep mode anytime. The station informs the
AP about these transitions by the power-save-bit (‘0’: waking up,
‘1’: transitioning into sleep state) inside Null packets.

Within the FLIP framework, NSM is capable of keeping track
of the timestamp, type, sub-type, direction, and the power-save-
bit of each packets exchanged with the AP. To reduce processing
overhead, the NSM-K module processes the packets belonging to
the stations whose energy are being monitored. The set of these
stations are programmed using the NSM-U module. Hence, for each
station, via the power-save-bit and more-data fields, NSM logs the
instances the station changes its operational mode. This allows
FLIP to keep track of the wake-up duration of the station.

It must be noted that, stations do not inform the AP when they
wake up for beacon reception; therefore, the duty cycle pattern
inferred by the approach explained above does not include the over-
head of beacon reception. In order to track the station’s wake-up
instances for beacon reception, we rely on the information provided
by hostapd, mac80211, and driver. Expiration of beacon alert timer
(a.k.a., bcntimer) in the WL-NIC generates an interrupt for beacon
transmission. This interrupt is handled by the ieee80211_bea-
con_get() function, which generates and transmits a beacon. We
probe this function to keep track of the timestamps and the num-
ber of beacons sent during the monitoring duration. However, the
stations may not wake up at every beacon instance. As explained in
Section 3.3, the stations may specify a listen interval value to reduce
the overhead of beacon reception. The listen interval value is in-
formed by the station to the AP during the association process; this
value is maintained by AP’s hostapd module (cf. Figure 1). NSM-U
utilizes the hostapd logs to obtain the listen interval value for each
associated station. With the number of beacons sent during the
monitoring period and the listen interval of the station, the NSM-
U module calculates the number of times the station woke up to
receive beacons. To accommodate for time synchronization inaccu-
racy, stations allocate guard awake times around beacon reception

[s
]

(
)

(E
)

[m
J]

En
er

gy
 C

on
su

m
pt

io
n

St
at

io
n

Aw
ak

e
Ti

m
e

(a)
Traffic Rate [Mbps]

(b)
Traffic Rate [Mbps]

Power Monitor FLIPFLIP Power Monitor

Figure 4: Comparison of FLIP’s passive energy monitoring
versus the energy consumption measured by a commercial
power monitoring tool. The x-axis is the incoming data rate
of the station. (a) Awake time (Ψ) and (b) energy consump-
tion (E). The station used is CYW43907 operating on APSM
with tail-time set to 10ms.

instances3. In this section, we assume the station’s wake-up dura-
tion per beacon instance is 𝑑𝑏 . The total duration spent in awake
mode by the station is calculated by NSM-U as Ψ = (𝑑𝑏 × 𝑐𝑏) +𝜓 ,
where 𝑐𝑏 denotes number of beacons during the monitoring pe-
riod and and𝜓 is station awake time inferred from power-save-bit
and more-data fields. The duty cycle during an interval [𝑡𝑚, 𝑡𝑛] is
computed as D = Ψ

𝑡𝑛−𝑡𝑚 .
To calculate the energy consumed by WL-NIC, its various op-

erational modes must be considered: (i) sleep, (ii) reception: when
the device is receiving packets, (iii) idle (a.k.a., idle listening): when
the device is ready to receive packets, and (iv) transmission: when
the device is transmitting packet. Devices’ data-sheets provide the
power consumption of these operational modes. Power consump-
tion of idle and reception modes are very similar, and we denote
their power consumption as 𝑝𝑟𝑥 . The energy consumed during
idle and reception modes is calculated as 𝑝𝑟𝑥 × (Ψ − Ψ𝑡𝑥). To
compute the energy consumed in transmission mode, we need
to extract the time spent by the station while transmitting pack-
ets. This time is calculated as Ψ𝑡𝑥 =

∑
∀𝑝∈P

𝑙𝑝
𝑟𝑝
, where P is the

set of packets sent by the station during the monitoring dura-
tion, 𝑙𝑝 is the length (bits) of packet 𝑝 , and 𝑟𝑝 is the physical-layer
transmission rate (bps) of packet 𝑝 . Within the FLIP framework,
NSM-U extracts the data rate and the length of the received pack-
ets from the driver. For example, ath9k maintains the data rate
and size of received packets inside the rs_rate and rs_datalen
fields within the ath_rx_status structure. We calculate the en-
ergy consumption during a monitoring period [𝑡𝑚, 𝑡𝑛] as follows:
E = 𝑝𝑟𝑥 × (Ψ − Ψ𝑡𝑥) + 𝑝𝑡𝑥 × Ψ𝑡𝑥 + 𝑝𝑠𝑙𝑒𝑒𝑝 × (𝑡𝑛 − 𝑡𝑚 − Ψ), where
𝑝𝑡𝑥 is the power consumption in transmission mode, and 𝑝𝑠𝑙𝑒𝑒𝑝
is the power consumption of sleep mode. Accounting for various
other factors, such as the preamble (i.e., specific signals that pre-
cedes every frame and helps in synchronizing the receiver, reduce
channel noise, and reduce errors), and variations in the transmit
power levels of the WiFi radio are left for future work.

3This was also observed in Section 3.3, where the UL Null packet sent by the station
was at least 7 ms after beacon announcement. A thorough study of beacon reception
overhead can be found in [33].

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

122

4.2 Empirical Evaluation of the Accuracy of
Passive Energy Monitoring

In this section, we validate the accuracy of FLIP for measuring
the duty cycle and energy consumption of stations’ WL-NIC. We
compare passive energy measurements against the results collected
from a commercial energy monitoring tool [25]. In the first set of
experiments, we use CYW43907 [36], which is a low-power, RTOS-
based 802.11n SoC designed for IoT applications. The physical layer
communication rate between this station and the AP is 54 Mbps.
We use iperf to exchange traffic with the station. The station uses
the APSM energy efficiency mechanism with its tail-time set to
10 ms. Figures 4 (a) and (b) compare the awake time and energy
consumption results, respectively. Each experiment is 30 seconds
long, each point in the graph is the median of ten experiments,
and error bars represent lower and higher quartiles. These results
confirm that the measurement error of FLIP is within 6% of the
baseline.

In the second set of experiments, in addition to the CYW43907
station, we use WLE900VX [35] which relies on a Linux-based
driver. We observed that WLE900VX does not support tail-time
below 50ms; hence, we changed the tail-time of CYW43907 to 50ms.
Also, we vary the experiments’ duration to validate the accuracy
of passive monitoring for various experimentation intervals. To
this end, we send a ping packet to the station per second and vary
the total number of pings sent during each experiment. Figure 5
presents the results. These results confirm that the measurement
error of FLIP is within 9% of the baseline for experiments as long
as 500 seconds.

5 RELATEDWORK
Monitoring WiFi Networks. Collecting monitoring data (a.k.a.,
network inspection or statistics collection) from WiFi APs makes it
possible to study network operation [14, 20, 26, 30], enhance perfor-
mance [16, 18, 24, 28, 49], and secure these networks [2, 32, 46, 48].
Measurements reflecting the state of the network enable making
informed decisions on APs, central controller in Software Defined
Networking (SDN), and stations. However, the existing works pri-
marily rely on collecting monitoring data at the application and
transport-layer levels. Additionally, they rely on a lower sampling
rate of collecting monitoring data, whereas, for applications such
as delay prediction and packet scheduling, efficient and high-rate
collection of monitoring data is necessary [43]. In [38, 42] we pro-
posed MonFi, a tool for programmable collection of monitoring
data from the WiFi stack. In contrast to the approach proposed
in this paper, MonFi does not utilize eBPF; therefore, adding new
monitoring capabilities requires kernel modification. Additionally,
MonFi cannot be used for fine-grained analysis of data path and
energy monitoring of stations.

DelayMonitoring. Utilizing a large-scale testbed, [30] and [31]
show that 50% of TCP packets incur a one-way latency longer than
20ms at APs and 10% of the packets incur a delay of 100ms or longer.
To perform these evaluations, they utilized a custom application
on stations to capture the Round-Trip Delay (RTT) experienced by
ICMP packets. Apart from the logistics required for installing such
user-level applications on hundreds of stations, the authors in [19]
have noted that such applications are unreliable and report inflated

[s
]

(
)

(E
)

[m
J]

En
er

gy
 C

on
su

m
pt

io
n

St
at

io
n

Aw
ak

e
Ti

m
e

(a)
Experiment Duration [s]

(b)
Experiment Duration [s]

[s
]

(
)

(E
)

[m
J]

En
er

gy
 C

on
su

m
pt

io
n

St
at

io
n

Aw
ak

e
Ti

m
e

(c)
Experiment Duration [s]

(d)
Experiment Duration [s]

WLE900VX

CYW43907

Power Monitor
FLIP

Power Monitor
FLIP

Power Monitor
FLIP

Power Monitor
FLIP

Figure 5: Awake time (Ψ) and energy consumption (E) of sta-
tionsmeasured by FLIP and a commercial powermonitoring
tool. The x-axis represents the experiment duration, which
also corresponds with the number of ping packets received
by the station. (a) and (b): The station is CYW43907. (c) and
(d): The station isWLE900VX. For both stations the tail-time
of Automatic Power Save Delivery (APSD) is set to 50 ms.

RTT values. The primary reasons are: first, packet processing delay
through the network stack and the delivery of packets to the appli-
cation layer introduces a non-negligible delay; second, the WL-NIC
introduces an additional packet transmission/reception delay; third,
it is non-trivial to establish accurate time synchronization among
the AP and stations. The FLIP framework proposed in this paper
addresses these challenges by collecting monitoring data from the
AP’s kernel, thereby preventing the need to rely on stations to
install specific monitoring applications.

Sniffer-based Approaches. Using sniffers to capture network
traffic has been widely used for network monitoring [4, 7, 8, 15,
27, 29]. Manufacturers have adopted this method in commercial
deployments as well. For example, Cisco Meraki’s MR18 APs in-
clude integrated sniffers. However, sniffer-based approaches add
additional cost as they require dedicated hardware and software
resources. Specifically, once an additional WL-NIC is added to an
AP, each incoming packet requires the operating system to process
an additional packet. Furthermore, the monitored data obtained
from the sniffer provides only higher-level information about the
traffic patterns and network characteristics. For example, this ap-
proach does not provide any insight into the delays incurred at
each packet processing stage. Also, depending on the processing
resources available to the sniffer, it may miss capturing and log-
ging some packets in dense environments; thus, multiple sniffers
might be required to capture all the packets [19]. In particular, any
difference between the location, type, and the antenna gain of the
sniffer and those of the AP’s WL-NIC result in discrepancies in the
way the two WL-NIC perceive the channel.

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

123

Network Management Protocols. Network and flow manage-
ment protocols, such as SNMP, NETCONF, and NetFlow, are com-
monly used for obtaining network statistics. For example, authors
in [34] use the k-means clustering technique to isolate groups of
users experiencing similar Quality of Service (QoS) levels in a large-
scale enterprise network. Undesirable QoS is inferred based on
users dropping the communication link. The authors collected data
from 363 APs via rsyslog (for network layer monitoring) and Net-
Flow (e.g., number of clients associated with each AP). However,
the set of monitoring data exposed by these protocols primarily
target wired networking devices. Additionally, SNMP imposes a
high overhead on network throughput [10, 45]. Hence, the rate of
network monitoring is considerably lower. For example, in [3, 50],
SNMP logs are polled every 5 minutes, and in [21], monitoring data
is collected once every 30 minutes.

Obtaining Monitoring Data by Utilizing Linux Tools. Util-
ities such as ethtool, iwpriv, and debugfs allow the collection of
monitoring data from Linux networking devices. iw is a netlink-
based interface utility for configuring wireless devices. For example,
the ‘station dump’ option prints information about the connected
stations; this information includes RSSI, the data rate of the received
packets, and the timestamp of the stations’ most recent activity.
SoftMAC drivers such as ath9k, ath10k, and ath11k provide a de-
bug mode utilizing the debugfs file system. For example, the most
widely monitored performance metric using ethtool and debugfs
is CU. However, these tools were developed to debug or configure
the network devices, not for an efficient and high-rate collection of
monitoring data. Additionally, the statistics reported by debugfs
and ethtool are not extensive and in order to add a debug state-
ment (in case of debugfs) or an ioctl call (in case of ethtool), the
associated kernel modules must be modified.

Using eBPF. The importance of eBPF has been highlighted by
academia and industry in various application domains such as sys-
tem monitoring, enhancing security, and supporting programma-
bility. Contrary to modifying or adding kernel modules, eBPF pro-
grams are verified before being loaded in the kernel, which makes
it a safer mechanism for accessing kernel memory [22]. Hence, the
networking industry relies on eBPF in production environments
for system profiling and enhancing network functions by adding
programmability to the data plane. For example, Facebook’s Katran
[37] and Sysdig’s Falco [39] use eBPF for implementing a layer-4
load balancer and a Kubernetes runtime security and monitoring
tool, respectively. Netflix has developed Flow Exporter for observ-
ing the per-flow transport layer (i.e., TCP/IP) statistics, and they
reported that the overhead of using the Flow Exporter tool is less
than 1% of the processor time; thereby enabling scalability over
many Amazon Web Services (AWS) instances. One of the most no-
table technologies enabled by eBPF is eXpress Data Path (XDP) [12],
which allows tapping into the reception path of the network stack
before any memory allocation, resulting in significant performance
benefits compared to other packet processing mechanisms. XDP is
actively being used in various domains such as Distributed Denial-
of-Service (DDoS) mitigation and packet inspection at Cloudflare
and Facebook. Despite the wide adoption of eBPF, our work is the
first to utilize eBPF for monitoring WiFi networks.

Energy Monitoring of WiFi Networks. Energy monitoring
provides insights into the effect of networking protocols, deploy-
ment strategy, and application type on stations’ energy efficiency,
especially for resource-constrained IoT stations. In low-power sta-
tions, WL-NIC accounts for more than 50% of the station’s total
energy budget; therefore, monitoring WL-NIC’s energy consump-
tion is an essential performance monitoring metric [5, 23, 47]. Since
commercial power monitors are bulky and expensive, various low-
cost power measurement tools have been proposed [9, 11]. Never-
theless, using these tools introduces significant challenges. First,
these platforms are required to be physically connected to the sta-
tions, thereby causing scalability concerns. Second, to separate the
energy consumption of WL-NIC from other components such as
processor, the power input-pins of the WL-NIC must be found and
probed.

6 CONCLUSION
In this paper, we studied the internals of the WiFi networking stack
and demonstrated how various components of this stack handle
the operations pertaining to packet switching at APs and energy-
efficient operation of stations. We then leveraged eBPF to augment
WiFi APs and performed system monitoring in terms of packet
switching delay and tracking the energy consumption of stations.
The empirical studies of this paper show how the proposed frame-
work can be used to investigate the operation of WiFi networks.
In addition to investigating various aspects of WiFi networks, the
FLIP framework can also be used to collect monitoring data and
develop methods that react to network dynamics. For example, by
providing insights into packet switching delay and the instanta-
neous energy efficiency of stations, FLIP facilitates the development
of algorithms that manage the steering of stations among APs. De-
veloping methods that rely on the FLIP framework is left as future
work.

REFERENCES
[1] 2020. Cisco Annual Internet Report (2018–2023) White Paper. https:

//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html

[2] Eirini Anthi, Lowri Williams, Małgorzata Słowińska, George Theodorakopoulos,
and Pete Burnap. 2019. A supervised intrusion detection system for smart home
IoT devices. IEEE Internet of Things Journal 6, 5 (2019), 9042–9053.

[3] Magdalena Balazinska and Paul Castro. 2003. Characterizing mobility and net-
work usage in a corporate wireless local-area network. In Proceedings of the
international conference on Mobile systems, applications and services. 303–316.

[4] Sanjit Biswas, John Bicket, Edmund Wong, Raluca Musaloiu-e, Apurv Bhartia,
and Dan Aguayo. 2015. Large-scale measurements of wireless network behavior.
In Proceedings of the ACM Conference on Special Interest Group on Data Commu-
nication. 153–165.

[5] Adam Bujnowski, Kamil Osinski, and Jerzy Wtorek. 2017. A navigation device
utilizing body communication channel for mobile wearable systems. In 10th
International Conference on Human System Interactions (HSI). IEEE, 25–30.

[6] Gianluca Cena, Stefano Scanzio, and Adriano Valenzano. 2018. SDMAC: a
software-defined MAC for Wi-Fi to ease implementation of soft real-time appli-
cations. IEEE Transactions on Industrial Informatics 15, 6 (2018), 3143–3154.

[7] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer Chi-
ang, Alex C Snoeren, Stefan Savage, and Geoffrey M Voelker. 2007. Automating
cross-layer diagnosis of enterprise wireless networks. ACM SIGCOMM Computer
Communication Review 37, 4 (2007), 25–36.

[8] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C Snoeren, Geoffrey M
Voelker, and Stefan Savage. 2006. Jigsaw: Solving the puzzle of enterprise 802.11
analysis. ACM SIGCOMM Computer Communication Review 36, 4 (2006), 39–50.

[9] BehnamDezfouli, Immanuel Amirtharaj, and Chia-Chi Chelsey Li. 2018. EMPIOT:
An energy measurement platform for wireless IoT devices. Journal of Network
and Computer Applications 121 (2018), 135–148.

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

124

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[10] Behnam Dezfouli, Vahid Esmaeelzadeh, Jaykumar Sheth, and Marjan Radi. 2018.
A review of software-defined WLANs: Architectures and central control mecha-
nisms. IEEE Communications Surveys & Tutorials 21, 1 (2018), 431–463.

[11] Karina Gomez, Roberto Riggio, Tinku Rasheed, Daniele Miorandi, and Fabrizio
Granelli. 2012. Energino: A hardware and software solution for energy consump-
tion monitoring. In 10th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks (WiOpt). IEEE, 311–317.

[12] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The express
data path: Fast programmable packet processing in the operating system ker-
nel. In Proceedings of the 14th international conference on emerging networking
experiments and technologies. 54–66.

[13] Toke Høiland-Jørgensen, Per Hurtig, and Anna Brunstrom. 2015. The Good, the
Bad and the WiFi: Modern AQMs in a residential setting. Computer Networks 89
(2015), 90–106.

[14] Toke Høiland-Jørgensen, Michał Kazior, Dave Täht, Per Hurtig, and Anna Brun-
strom. 2017. Ending the anomaly: Achieving low latency and airtime fairness in
WiFi. In Proceedings of USENIX. 139–151.

[15] Si Young Jang, Byoungheon Shin, and Dongman Lee. 2016. An adaptive tail time
adjustment scheme based on inter-packet arrival time for IEEE 802.11 WLAN. In
ICC. IEEE, 1–6.

[16] Glenn Judd and Peter Steenkiste. 2002. Fixing 802.11 access point selection. ACM
SIGCOMM Computer Communication Review 32, 3 (2002), 31–31.

[17] Chia-Chi Li, Vikram Ramanna, Daniel Webber, Cole Hunter, Hack Tyler, and
Behnam Dezfouli. 2021. Sensifi: A Wireless Sensing System for Ultra-High-Rate
Applications. IEEE Internet of Things Journal (2021).

[18] Shenghong Li, Mark Hedley, Keith Bengston, David Humphrey, Mark Johnson,
and Wei Ni. 2019. Passive localization of standard WiFi devices. IEEE Systems
Journal 13, 4 (2019), 3929–3932.

[19] Weichao Li, Daoyuan Wu, Rocky KC Chang, and Ricky KP Mok. 2017. Toward
accurate network delay measurement on android phones. IEEE Transactions on
Mobile Computing 17, 3 (2017), 717–732.

[20] Simon Liu, V Ramanna, and Behnam Dezfouli. 2020. Empirical Study and En-
hancement of Association and Long Sleep in 802.11 IoT Systems. In Global Com-
munications Conference (GLOBECOM).

[21] Feng Lyu, Ju Ren, Nan Cheng, Peng Yang, Minglu Li, Yaoxue Zhang, and Xuemin
Shen. 2019. Big data analytics for user association characterization in large-scale
wifi system. In IEEE International Conference on Communications (ICC). IEEE,
1–6.

[22] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone, and
Yunsong Lu. 2021. A framework for eBPF-based network functions in an era
of microservices. IEEE Transactions on Network and Service Management 18, 1
(2021), 133–151.

[23] Aleksandar Milenkovic, MilenaMilenkovic, Emil Jovanov, Dennis Hite, and Dejan
Raskovic. 2005. An environment for runtime power monitoring of wireless sensor
network platforms. In Proceedings of the Thirty-Seventh Southeastern Symposium
on System Theory (SSST). IEEE, 406–410.

[24] Laudin Molina, Tanguy Kerdoncuff, Dareen Shehadeh, Nicolas Montavont, and
Alberto Blanc. 2017. WMSP: Bringing the wisdom of the crowd to WiFi networks.
IEEE Transactions on Mobile Computing 16, 12 (2017), 3580–3591.

[25] Monsoon Power Monitor. 2013. online]: http://www. msoon. com/LabEquipment.
PowerMonitor/, visited Nov (2013).

[26] Guoshun Nan, Xiuquan Qiao, Jiting Wang, Zeyan Li, Jiahao Bu, Changhua Pei,
Mengyu Zhou, and Dan Pei. 2018. The Frame Latency of Personalized Livestream-
ing Can Be Significantly Slowed Down by WiFi. In IPCCC. IEEE, 1–8.

[27] Ashish Patro, Srinivas Govindan, and Suman Banerjee. 2013. Observing home
wireless experience through wifi aps. In Proceedings of the 19th annual interna-
tional conference on Mobile computing & networking. 339–350.

[28] Changhua Pei, Zhi Wang, Youjian Zhao, Zihan Wang, Yuan Meng, Dan Pei,
Yuanquan Peng, Wenliang Tang, and Xiaodong Qu. 2017. Why it takes so long to
connect to a WiFi access point. In IEEE Conference on Computer Communications
(INFOCOM). IEEE, 1–9.

[29] Changhua Pei, Youjian Zhao, Guo Chen, Yuan Meng, Yang Liu, Ya Su, Yaodong
Zhang, Ruming Tang, and Dan Pei. 2017. How Much Are Your Neighbors Inter-
fering with Your WiFi Delay?. In International Conference on Computer Commu-
nication and Networks (ICCCN). IEEE, 1–9.

[30] Changhua Pei, Youjian Zhao, Guo Chen, Ruming Tang, Yuan Meng, Minghua
Ma, Ken Ling, and Dan Pei. 2016. WiFi can be the weakest link of round trip
network latency in the wild. In IEEE Conference on Computer Communications
(INFOCOM). IEEE, 1–9.

[31] Changhua Pei, Youjian Zhao, Yunxin Liu, Kun Tan, Jiansong Zhang, Yuan Meng,
and Dan Pei. 2017. Latency-based WiFi congestion control in the air for dense
WiFi networks. In IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS). IEEE, 1–10.

[32] Antônio J Pinheiro, Jeandro de M Bezerra, Caio AP Burgardt, and Divanilson R
Campelo. 2019. Identifying IoT devices and events based on packet length from
encrypted traffic. Computer Communications 144 (2019), 8–17.

[33] Vikram K Ramanna, Jaykumar Sheth, Simon Liu, and Behnam Dezfouli. 2021.
Towards Understanding and Enhancing Association and Long Sleep in Low-
Power WiFi IoT Systems. IEEE Transactions on Green Communications and
Networking (2021).

[34] Lucio Henrik A Reis, Luiz Claudio S Magalhães, Dianne Scherly V de Medeiros,
and Diogo MF Mattos. 2020. An unsupervised approach to infer quality of service
for large-scale wireless networking. Journal of Network and Systems Management
28, 4 (2020), 1228–1247.

[35] Compex Systems. [n.d.]. Compex WLE900VX 3X3 MIMO wireless adapter. https:
//compex.com.sg/shop/wifi-module/802-11ac-wave-1/wle900vx-

[36] Cypress Semiconductor. [n.d.]. CYW43907: IEEE 802.11 a/b/g/n SoC with an
Embedded Applications Processor. http://www.cypress.com/file/298236/download

[37] Facebook. [n.d.]. Facebook: Katran. https://github.com/facebookincubator/katran
[38] SIOTLAB. [n.d.]. MonFi: Tool for High-Rate, Efficient, and Programmable Monitor-

ing of WiFi Devices. https://github.com/SIOTLAB/MonFi
[39] Sysdig. [n.d.]. Sysdig falco: Behavioral activity moni-toring with container support.

https://github.com/draios/oss-falco
[40] Jose Saldana, José Ruiz-Mas, and Jose Almodovar. 2017. Frame aggregation in

central controlled 802.11 WLANs: The latency versus throughput tradeoff. IEEE
Communications Letters 21, 11 (2017), 2500–2503.

[41] Jaykumar Sheth and Behnam Dezfouli. 2019. Enhancing the Energy-Efficiency
and Timeliness of IoT Communication in WiFi Networks. IEEE Internet of Things
Journal 6, 5 (2019), 9085–9097.

[42] Jaykumar Sheth and Behnam Dezfouli. 2021. MonFi: A Tool for High-Rate,
Efficient, and Programmable Monitoring of WiFi Devices. In IEEE Wireless Com-
munications and Networking Conference (WCNC). IEEE, 1–7.

[43] Jaykumar Sheth, Cyrus Miremadi, Amir Dezfouli, and Behnam Dezfouli. 2020.
EAPS: Edge-Assisted Predictive Sleep Scheduling for 802.11 IoT Stations. arXiv
preprint arXiv:2006.15514 (2020).

[44] Ahmad Showail, Kamran Jamshaid, and Basem Shihada. 2016. Buffer sizing in
wireless networks: challenges, solutions, and opportunities. IEEE Communications
Magazine 54, 4 (2016), 130–137.

[45] Fabricio A Silva, Linnyer Beatrys Ruiz, Thais Regina M Braga, José Marcos S
Nogueira, and Antonio Alfredo Ferreira Loureiro. 2005. Defining a Wireless
Sensor Network Management Protocol.. In LANOMS. Citeseer, 39–50.

[46] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2018. Classifying
IoT devices in smart environments using network traffic characteristics. IEEE
Transactions on Mobile Computing 18, 8 (2018), 1745–1759.

[47] Li Sun, Haotian Deng, Ramanujan K Sheshadri, Wei Zheng, and Dimitrios Kout-
sonikolas. 2016. Experimental evaluation of WiFi active power/energy consump-
tion models for smartphones. IEEE Transactions on Mobile Computing 16, 1 (2016),
115–129.

[48] Bhagyashri Tushir, Yogesh Dalal, Behnam Dezfouli, and Yuhong Liu. 2020. A
Quantitative Study of DDoS and E-DDoS Attacks on WiFi Smart Home Devices.
IEEE Internet of Things Journal (2020).

[49] Jun Zhang, Guangxing Zhang, Qinghua Wu, Lei Song, and Gaogang Xie. 2017.
LazyAS: Client-transparent access selection in dual-band WiFi. In 26th Inter-
national Conference on Computer Communication and Networks (ICCCN). IEEE,
1–9.

[50] Mengyu Zhou, Kaixin Sui, Minghua Ma, Youjian Zhao, Dan Pei, and Thomas
Moscibroda. 2016. Mobicamp: A campus-wide testbed for studying mobile phys-
ical activities. In Proceedings of the 3rd International on Workshop on Physical
Analytics. 1–6.

Session: Cloud Computing and Content Delivery MobiWac ’21, November 22–26, 2021, Alicante, Spain

125

https://compex.com.sg/shop/wifi-module/802-11ac-wave-1/wle900vx-
https://compex.com.sg/shop/wifi-module/802-11ac-wave-1/wle900vx-
http://www.cypress.com/file/298236/download
https://github.com/facebookincubator/katran
https://github.com/SIOTLAB/MonFi
https://github.com/draios/oss-falco

	Abstract
	1 Introduction
	2 System Architecture
	2.1 AP's Networking Stack
	2.2 Leveraging eBPF for Collecting Monitoring Data from the Kernel

	3 Delay Analysis of Switching Packets from the Wired Interface to the Wireless Interface
	3.1 Power Saving Methods of 802.11
	3.2 FLIP's Methodology for Monitoring Wired-to-wireless Switching Path
	3.3 Empirical Evaluation of Wired-to-wireless Switching Delay

	4 Passive Monitoring of Stations' Energy Consumption
	4.1 FLIP's Methodology for Monitoring the Energy Consumption of Stations
	4.2 Empirical Evaluation of the Accuracy of Passive Energy Monitoring

	5 Related Work
	6 Conclusion
	References

