
A Residual LSTM based Multi-Label Classification
Framework for Proactive SLA Management in a

Latency Critical NFV Application Use-Case
Nikita Jalodia∗†, Mohit Taneja∗, Alan Davy∗†, Behnam Dezfouli‡
∗Walton Institute for Information and Communication Systems Science,

Department of Computing and Mathematics, Waterford Institute Of Technology, Waterford, Ireland
†SFI CONNECT Research Centre for Future Networks and Communications, Ireland

‡Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, USA
{nikita.jalodia, mohit.taneja}@waltoninstitute.ie, adavy@wit.ie, bdezfouli@scu.edu

Abstract—We are witnessing an emergence of a new era of
applications delivered via a paradigm of flexible and softwarized
communication networks. This has opened the market to a wider
movement towards virtualized applications and services in key
verticals such as automated vehicles, smart grid, virtual reality
(VR), Internet of Things (IoT), industry 4.0, telecommunications,
etc. With an increasing emergence of verticals driven by the
vision of low latency and high reliability, there is a wide gap
to efficiently bridge the Quality of Service (QoS) constraints for
the end-user experience. Most latency-critical services are over-
provisioned on all fronts to offer reliability, which is inefficient
in the long run. In this work, we present a Residual Long
Short-Term Memory (LSTM) based multi-label classification
framework for proactive SLA management in a latency-critical
Network Function Virtualization (NFV) application use case.
We compose a multivariate time-series forecasting model with
multiple time-step predictions in a multi-output scenario, and
associate a multi-label classifier for a granular prediction of
individual Service Level Objective (SLO) violations for each
step in the forecast horizon. The Residual LSTM approach
achieves an improvement of 31.1% over the baseline on the
forecast classification accuracy, and a 2.65% improvement on
the interpolated average precision over the standard LSTM
methodology.

Index Terms—Network function virtualization, machine learn-
ing, deep learning, LSTM, multi-label classification, residual
LSTM, prediction methods, quality of service, service level
agreements, supervised learning, artificial neural networks, SLA

I. INTRODUCTION

5G’s usage scenario of ultra-reliable low-latency commu-
nications (URLLC) is further expected to extend in scope
to a high-throughput ubiquitous global connectivity at scale,
driving all major verticals towards a change [1]. Further, the
next generation of communication networks continue to be
driven by a fundamental restructuring in the way that the
networks and services are deployed and delivered. Network

This work has emanated from research conducted with the financial support
of (i) Science Foundation Ireland (SFI), co-funded under the European
Regional Development Fund under Grant Number 13/RC/2077, and (ii) NGI
Explorers Fellowship Grant (grant agreement no. 825183).

programmability and softwarization are the key drivers of this
change, and are delivered via the concepts of Software De-
fined Networking (SDN) and Network Function Virtualization
(NFV) [2]. These continue to play a pivotal role in the vision of
6G, forming the backbone of flexible and intelligent networks
[1]. SDN abstracts the underlying network while NFV intro-
duces softwarization and decouples network functions from
the underlying hardware, overall creating a hardware agnostic
virtualized environment for network applications [3].

As a result of such a shift, the Cloud infrastructure is no
longer host to just web based application services, but is also
being extended for the next-generation of requirements that
fuel futuristic application verticals [2]. This shift also includes
verticals that previously relied solely on specialised hardware.
A key example of such a sector is the telecommunications in-
dustry, which is driven by one of the oldest and most complex
operational and business support systems to date [1]. Tradi-
tionally, with its specialised infrastructure, the telecoms realm
has evolved towards a highly reliant service, with carrier-grade
offerings guaranteeing a five-nines standard of availability [4],
set to improve to a seven-nines standard in 6G [1]. To match
this in softwarized environments, 5G deployments include the
proposition of network slicing, clustering applications with
similar demands in an appropriate Cloud environment [3]. This
ensures the placement of latency-critical URLLC applications
in a high availability slice, where resources are suitably
provisioned to ensure reliability. While service operators come
up with new scaling policies to match the demand facing the
current generation of Cloud based application services, these
are still a long way to go towards supporting latency-critical
applications with high availability values that match the legacy
systems with specialized infrastructure.

Further, efficiency and reliability are competing elements
within an SLA, marking a trade-off between system usage
and requirements [5]. While network operators and Cloud
operators may resort to over-provisioning to match the high
requirements for these latency-critical applications in a high
availability network slice, such practices are inefficient in the

978-1-6654-3161-3/22/$31.00 ©2022 IEEE 782

20
22

 IE
EE

 1
9t

h
A

nn
ua

l C
on

su
m

er
 C

om
m

un
ic

at
io

ns
 &

 N
et

w
or

ki
ng

 C
on

fe
re

nc
e

(C
C

N
C

) |
 9

78
-1

-6
65

4-
31

61
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

N
C

49
03

3.
20

22
.9

70
05

02

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

Retraining
 Feedback Loop

Objectives

Testbed Deployment

Virtual
Infrastructure

Manager
Monitoring

Agent

SIPp Bot Users

R
aw

 D
at

a

SLO Definitions

Data Labeling

Residual LSTM based
Multi-Label Classification
Framework for Proactive

SLA Management

Analysing frequent
violation bottlenecks to

restructure scaling
policies

Proactive resource
management for SLA

compliance

Production

Clearwater
vIMS

Batch
Sample

Clearwater VNF: vIMS

Bono

Sprout

Ralf

Homestead

Ellis

Homer

Testbed Setup and Data
Management

D
at

a
Pr

ep
ro

ce
ss

in
g

Model Setup and Development,
Experimentation and Evaluation

Training and
Validation

Test Performance on
Evaluation Metrics

Production
Deployment

Trained
Model

Framework

Fig. 1: Overview of system architecture, and objectives. The
highlighted elements define the scope of our contribution.

long run [6]. A transition towards complete softwarization
of networks and services brings in the requirement to adopt
more complex models to guarantee QoS and reliability [7].
This is because of an impending evolution in not just the way
networks are composed and managed, but also renewed appli-
cation architectures, corresponding QoS and SLA management
techniques, and optimization and automation to cope with the
added complexity [8]. A key aspect to driving such a change
is in how the Cloud reacts to such a latency-critical demand,
and in being precisely proactive over time [6].

In this work, we present a machine learning based frame-
work for proactive SLA management in the use case of a
latency-critical NFV application. The key contributions are
summarised as follows:
• We work with a real-world deployment of a latency

critical NFV application with two months’ worth of raw
network telemetry data sampled every 30 seconds, and
use that as the basis for all our policy formation and
learning models. An overview of the system and scope is
provided in Figure 1.

• We compose a multivariate time-series forecasting model
with multiple time-step predictions in a multi-output
scenario, i.e. the model forecasts a sequential range of
future values for multiple features in one go, thereby
enabling us to track a realistic deployment setup. Further,
we propose the suitability of a residual connections based
Long Short-Term Memory (LSTM) architecture when
used for such a task, and compare the performance of
multiple forecasting methodologies on such a use-case.

• While drafting the SLA, we decompose it into a set of
realistic Service Level Objective (SLO) definitions for
such a latency critical use-case in an operational setting.
We categorise the SLOs into four broad characteristics

that are critical towards the deliverance of required perfor-
mance, and enhance these for a fine-grained monitoring
of a latency-sensitive application that needs high avail-
ability and reliability. Further, we associate and model
a multi-label classifier to effectively predict each of the
multiple SLO violation categories that an application state
can concurrently be associated with at an instance, i.e. as
a multi-output prediction target. This helps in proactively
predicting a more granular state of impact within an SLA
violation projection.

To the best of our knowledge, this is the first approach in
the area that proposes and applies a Residual LSTM based
framework for proactive SLA management, and applies multi-
label classification towards such predictive objectives.

The rest of the paper has been structured as follows: §II
describes the background and related work, §III describes the
Clearwater NFV application, and defines the SLA and SLOs
drafted for the purpose of violation prediction. §IV provides an
overview of the proposed framework. Thereafter, §V expands
on the details of the experimental setup, §VI evaluates the
results obtained through the various models, and §VII presents
the conclusion and future work.

II. RELATED WORK

Much of the work done so far addresses QoS with char-
acterizing and anticipating traffic patterns, and a combina-
tion of reactive and proactive scaling policies. Significant
progress has been made in the context of forecasting and
clustering anticipated network traffic [9], [10], using machine
learning to classify network traffic in NFV [11], [12], and
related resource allocation [5], [6]. Authors in [13] present
an overview of linear and non-linear forecasting methods,
and discuss their use to improve multi-slice resource man-
agement in 5G networks. LSTM based approaches [13]–[15]
have been successfully applied in the area of communication
networks for resource forecasting. However, there have been
very limited applications to the use of Residual LSTM in NFV
[16], and that too have been in the domain of network slice
reconfiguration. An in-depth survey [17] on the autonomic
provisioning and QoS management for SDN-based networks
highlights the need for more in-depth machine learning models
that target and improve policy-based QoS management, and
remark that assuring end-user QoE continues to be an open
research area.

Automated SLA management for use-cases deployed on
softwarized networks has been highlighted to be a critical
requirement for next generation networks [18], [19]. A the-
oretical SLA management framework that maps high-level
requirements to low-level resource attributes is presented in
[20], where the authors highlight the additional challenges
that 5G and future architectures present. Authors in [21],
[22] present a cognitive management architecture for these
softwarized networks, and discuss the importance of machine
learning techniques in such complete end-to-end management
control loops. Existing work on SLA and SLO violation
prediction approaches it as a single label output classification

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

783

[23]— either identifying an overall SLA violation with a
binary classification, or identifying a defined SLO breach with
multi-class classification [24]. A proof of concept for SLA
enforcement in programmable networks in a Cloud-based envi-
ronment is presented in [25], where the authors work towards
identifying an SLO breach with a multi-class decision tree
classification methodology. However, in a realistic scenario,
there is a pressing need for the incorporation of multi-output
models as we move towards more complex decision-making
[26]. As future networks as well as deployed services gain
complexity, it is impractical to define and consider an SLO as
a mutually exclusive single-output target. To fill this gap, we
propose the use of multi-label classification methodology for a
multi-output SLO violation prediction in NFV environments.
Associating structured data with multiple semantic information
at once holds tremendous potential in the future as we advance
towards solving more complex decision making problems [26].
Our previous work in the area involves an in-depth analysis
and benchmarking of multiple machine learning and deep
learning methods employed towards multi-label SLA violation
prediction in such a use-case, and also addresses the challenges
of imbalanced classification often associated with real-world
data in a multi-output target [27].

To the best of our knowledge, this is the first approach in
the area that proposes and applies a Residual LSTM based
framework for proactive SLA management in rapid forecasting
based resource monitoring of latency sensitive NFV applica-
tions, and applies multi-label classification towards such target
objectives.

III. DEFINING SERVICE LEVEL AGREEMENTS

While an SLA is a qualitative measure that binds the
service provider and facilitator into a formally agreed contract
ensuring QoS for the end user, this is realised on a set of
low level metrics delivered through SLOs and Service Level
Indicators (SLIs). The SLIs can be defined as quantitative
measures that build upon raw system metrics, which further
feed into the SLOs as a quantitatively definitive target range
or threshold towards the deliverance of an SLA.

SLI ≤ target threshold (1)

lowerbound ≤ SLI ≤ upperbound (2)

The breach of an SLA implies an explicit consequence, often
financial; while the SLOs and SLIs are typically measurable
indicators that define the policy of tolerance with measurable
service characteristics [28].

A. Project Clearwater Cloud IMS

The IP Multimedia Subsystem (IMS) is a reference ar-
chitecture first defined by the 3GPP for delivering fixed-line
and mobile communications applications built on the Internet
Protocol (IP) [29]. Project Clearwater1 is an open-source im-
plementation of IMS in the Cloud, following IMS architectural
principles and supporting all of the key standardized interfaces

1https://www.projectclearwater.org

Provisioning Portal
Sign-up, Password Management,

SIP Identities Management
Edge Proxy
IMS P-CSCF

SIP Router
IMS I-CSCF, S-

CSCF

Charging and
Billing

CTF
XDMS

Stores MMTel

HSS Mirror
Stores Authentication Credentials and User Profiles,
delivers some I-CSCF and S-CSCF Functionalities

User
Equipment

Bono Sprout

Ralf Homestead

Ellis

Homer

SIP
P-CSCF
I-CSCF

S-CSCF
HSS

XDMS
MMTel

CTF

Session Initiation Protocol
Proxy - Call Session Control Function
Interrogating - Call Session Control Function
Serving - Call Session Control Function
Home Subscriber Server
XML Document Management Server
Multimedia Telephony Service
Charging Trigger Function

Cassandra
Database Nodes

Memcached
Database Nodes

Fig. 2: Clearwater vIMS architecture, depicting the various
VNFCs and their high-level functionalities.

expected of an IMS core network. The web services-oriented
design inherent to Clearwater makes it ideal for instantiation
within NFV environments as a virtualized VNF. The new
Service-Based Architecture adopted by the 5G standards is
very closely related to the inherent Clearwater model, and it
has been widely used in research as a standard test-bed setup
for NFV related work [4]–[7], [25].

In our work, we use Clearwater as the use-case for a
Cloud based virtualized NFV application. It consists of 6 main
components, namely Bono, Ellis, Homer, Homestead, Ralf,
and Sprout. A high level view of these VNFCs and their
functionalities replicating a standard IMS architecture is as
shown in Figure 2.

B. Defining SLOs for Clearwater

We use raw network telemetry data and system monitoring
metrics obtained via a standard realization of the Clearwater
test-bed setup to define the SLIs and SLOs governing an
informal SLA. We utilise these metrics as the foundations
for the SLIs, which when matched with a target threshold or
range form SLOs. These metrics were collected on a 30 second
sampling frequency through Monasca2, an open-source Python
based monitoring service running on each of the Clearwater
VNFCs. Further details regarding the data is elaborated upon
in Section V.

We define four SLOs for the Clearwater VNF, targeting the
load, computation, disk, and input/output (IO) characteristics
respectively. This is to highlight the varying reason behind the
loss of QoS at any time, so that:

1) The scaling decisions can be dynamically adapted with a
high degree of detail, considering the projected forecasts.
This helps towards the objective of proactive resource
management for SLA compliance.

2www.monasca.io

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

784
Authorized licensed use limited to: Santa Clara University. Downloaded on July 02,2023 at 04:03:07 UTC from IEEE Xplore. Restrictions apply.

2) The scaling policies can be customised at a more gran-
ular level towards better efficiency, upon analysing long
term trends of frequent SLO bottleneck categories as
specific to the application.

Authors in [25] recognize the lack of realistic SLOs in
consideration in research, and recommend that an SLO be
composed of a combination of atleast two metrics. To set
a fair ground for our analysis, we define the SLOs with
this definition in mind, and use a combination of over two
SLIs while drafting each SLO rule. The thresholds were
largely defined based on the application’s usage characteristics,
reaction to stress tests, and use-case requirements.

1) SLO1: Load: This SLO is a measure of the com-
putational work ongoing, and captures the running
processes— either using the CPU, or in a wait state.

2) SLO2: Computation: This SLO is defined as a combina-
tion of certain CPU and RAM characteristics combined
with the idle time profile, which overall characterizes an
overload or malfunction.

3) SLO3: Disk: This SLO captures prolonged periods of
inefficient IO wait times when the CPU is otherwise idle,
which indicates potential bottlenecks in the read/write
operations accrued by the hard disk.

4) SLO4: IO: This SLO captures the latency when inter-
acting with IO devices, when there is a sudden and pro-
longed surge in incoming network traffic as compared
to the moving average.

A detailed composition of the SLO definitions can be found
in our previous work [27]. Formally, let L denote the set of
SLOs thus defined:

L = [SLO1, SLO2, SLO3, SLO4] (3)

This equivalently denotes:

L = [SLOload, SLOcomputation, SLOdisk, SLOio] (4)

The metrics captured by Monasca are at the granularity of the
individual VNFCs as shown in Figure 2, and an SLO violation
at any of the individual VNFCs triggers an SLO violation
state for the Clearwater application service. Therefore, we
ultimately define the SLOs at the application level, i.e. for
the entire VNF as an application service. Thus, each data
instance is associated with 4 SLOs as defined by L above,
where SLOj , j ∈ |L| assumes one of two states:

SLOj =

{
1, if V iolated (at any VNFC)
0, otherwise

(5)

IV. PROACTIVE SLA MANAGEMENT FRAMEWORK

Given that the aim is to be able to proactively predict
the future SLA violations given the time-series of tracked
system and application metrics at a set sampling frequency,
we decompose the problem as that of continuous feature
forecasting, followed by a classification methodology that
predicts the associated SLO violations in the forecasts. The
workflow and pseudo-code of the methodology adopted is as
depicted in Algorithm 1.

Algorithm 1: Residual LSTM based Forecasting and
Multi-Label Classification
Input: Data: D ∈ Rd

• PRE-PROCESSING (D)

procedure DATA SPLITS
Split the data in train, test, and validation sets

end
procedure DATA TRANSFORMATION

Data standardization and normalization
end
procedure DATA WINDOWING AND BATCHING

Split data into windows of features and associated
labels)
< input width, all input features >
< label width, predicted features >
Prepare tensor slices of windows as model inputs
< batch, time, features >

end

• THE MODEL (output from DATA WINDOWING)

repeat
FORECASTING– RESIDUAL LSTM
Take train and validation data windows

if Stacked LSTM model(Return Sequence)
then

Model architecture based sequentially stacked LSTM
layers

else
Model architecture based LSTM layer

end if
for each time step t do

delta = MODELt(MODELt−1)
end for
return (MODELt−1 + delta)

Model architecture based Dense layer
Model architecture based Reshaping layer
Output forecast values
MULTI-LABEL CLASSIFICATION
Dense layer
Reshaping layer
Output multi-label classification prediction values

until CONVERGENCE;

A. Clearwater Feature Forecasting

Artificial neural networks (ANNs) are powerful non-linear
function approximators that are flexible to be adapted to both
regression and classification tasks, and have demonstrated
tremendous potential within the machine learning space. Each
neuron within a layer represents a mathematical function
comprising of inputs, weights, bias, and threshold; and uses
an activation function to transform the outputs to a non-linear
space to learn and perform more complex tasks [30]. Thus,
subject to the right choice of architecture and parameters for
the task at hand, ANNs can be trained to address a wide variety

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

785

of complex tasks, including that of time-series forecasting.
Recurrent neural networks (RNN) are a class of neural net-

works that are powerful for modeling sequential data such as
time-series, and are especially crafted towards such use-cases
[6]. An RNN layer maintains an internal state that encodes
information about the time-steps it has seen so far. LSTM is
a special enhancement on RNN, and overcomes the potential
gradient vanishing and gradient exploding problems that RNNs
tend to succumb to while training using back-propagation [31].
An LSTM layer consists of a set of recurrently connected
memory blocks, known as LSTM units. Each LSTM unit is
composed of a memory cell and three multiplicative units – the
input, output and forget gates. These control the interaction of
the cells with the network by regulating the flow of information
in and out of the cell with continuous analogues of write, read
and reset operations [30].

LSTM models are adept at capturing short-term and long-
term dependencies in temporal sequential data, and have been
shown to outperform linear models on a wide range of use-case
scenarios [15]. Moreover, neural network based approaches
like LSTM are well equipped to effectively model problems
with multiple input variables, making them a good fit for
multivariate time-series forecasting.

However, LSTMs are computationally expensive [13]. In
use-cases such as ours with a high sampling frequency and
rapid forecasting windows, the output is expected to be a
small change as compared to the previous time-step. ResNets
(Residual Networks) in deep learning refer to architectures
where each layer adds to the model’s accumulating result [32].
Adapting that structure into LSTM layer(s) [33], we can take
advantage of the fact that the change at the next time-step
is expected to be small. Thus, instead of predicting the next
value of each feature at each time-step, a better approach to the
model structure would be initialize the LSTM layer with the
model’s values from the previous time-step, and then to predict
the subsequent change in these values over the next time-step.
We reason that the LSTM layers in our use-case scenario can
benefit from such a Residual LSTM model structure, and lead
to better performance as opposed to traditional LSTM based
models. Algorithm 1 presents the procedural workflow adopted
towards achieving such a model. We evaluate this methodology
in the following sections for both wide and stacked LSTM
model structures.

B. SLA Violation Classification

Multi-label classification is defined as a classification task
where each data sample instance can be assigned n labels from
a set of |L| possible label classes as defined in 3 and 4, where
n ∈ [0,L], and |L| > 1. Each of the class labels in L is binary,
i.e. either 0 or 1, where 0 denotes a negative occurrence and
1 denotes the positive occurrence.

Semantically, a multi-label target can be thought of as
a set of labels for each sample. Multi-label classification
differs from multi-class classification in that the latter applies
mutually exclusive labels to a data sample, which is not the
case for multi-label problems.

Formally, let D be a multi-label dataset where X = Rd is a
d-dimensional input instance space of numerical features, and
L = {λ1, λ2, · · · , λq} a finite output label space of |L| = q
discrete class labels (with values 0 or 1), and q > 1.

The task of multi-label learning is to learn a function
f : X −→ 2L from the multi-label training set S with u
examples, S = {(xi, Yi) | 1 ≤ i ≤ u}. To compare, multi-
class classification can be seen as a special case of multi-
label classification where f : X −→ L, while in binary
classification f : X −→ {0, 1}.

For each multi-label example (xi, Yi), xi ∈ X is a d-
dimensional feature vector (xi1, xi2, · · · , xid)>, and Yi ⊆ L
is the set of labels associated with xi. Label associations
can also be represented as a q dimensional binary vector
yi = (yi1, yi2, · · · , yiq)> = {0, 1}q , where each element is
1 if the label is relevant, and 0 otherwise. By contrast, in
single-label (binary or multi-class) learning, |Y | = 1.

Specific to the task at hand, we appropriately design the
model such that the output layer consists of |L| neurons, each
representing a label λj in L, where L = {λj | j ∈ [1, q]}.
We use sigmoid as the activation function in the output layer,
so the jth neuron in that layer outputs the probabilities in
the range [0, 1] of the data instance belonging to λj . This
is interpretable as a binary classification by setting a cutoff
probability threshold value (set to 0.5) for each class label.

V. EXPERIMENTAL SETUP

The experiments were all set up using Python (version 3.8.5)
and its associated data-science libraries. We use Tensorflow
[34] version 2.4.1 with Keras [35] to program all the neural
network based implementations.

A. Dataset

We use a publicly hosted dataset3 obtained via a standard
Clearwater test-bed, a visualization for which is presented
in 1. While real-world deployments require frequent retrain-
ing and readjustment of weights, the nuances of production
deployment are beyond the scope of this work. The dataset
comprises of raw system resource monitoring telemetric data
files that track 26 metrics for each of the 6 monitored VNFs
that compose the Clearwater ecosystem, and includes bursts of
abnormal behaviour through its integrated stress testing tools
to simulate VNF congestions and QoS degradations. The data
is sampled every 30 seconds, and spans an overall period of 2
months. This corresponds to 156 features overall, indexed at
timestamps, and 177,098 rows of raw data.

B. System Configuration

The experiments were performed in a Docker4 based con-
tainerized environment running atop a bare-metal Linux server
with 64 GB RAM, Intel® Xeon® CPU E5-2660 v2 @ 2.20GHz
(40 physical processors), 2 NVIDIA® Tesla K20m GPUs, and
500 GB local storage. The Docker image runs an Ubuntu 20.04
LTS operating system, and CUDA version 11.3 for the GPUs.

3https://bit.ly/3gPY8c5
4www.docker.com

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

786

TABLE I: Performance metrics for the best performing model architecture within each category

Model
Name

No. of Neurons/Units in the Key
Hidden Layers in the Model Architecture

Classification Metrics Regression Metrics
Accuracy Precision Recall AUC-ROC AUC-PRC BCE Loss MAE RMSE

Linear 130 0.6488 0 0 0.5 0.3512 5.4176 0.3512 0.5926
Dense 2048 0.8500 0.9025 0.6424 0.8074 0.7955 2.0124 0.1599 0.3836
LSTM 2048 0.8500 0.9025 0.6424 0.7893 0.7776 1.9082 0.1625 0.3853

Residual LSTM 128 0.8510 0.9082 0.6424 0.8082 0.7982 1.6747 0.1647 0.3810
Residual LSTM

(Stacked Sequence)
1024, 512, 256 0.8500 0.9025 0.6424 0.8069 0.7929 1.3284 0.1629 0.3839

C. Learning and Adaptation

We adopt a sliding window methodology for time-series
forecasting, which is suitable for rapid forecasting. We tested
the models on different window sizes, and considering the
short-term dynamics of the use-case, the input window size
was optimally set to 4, and the models forecast the possibilities
of SLO violations over each of the next 4 time-steps. Thus,
since the sampling frequency is 30 second intervals, we use
the data for all the features over the last 2 minutes to forecast
the specific SLOs that may be violated at each step over the
next 2 minutes.

We split the available data into training and test sets in
the ratio of 80 : 20, and the training set is further split into
training and validation sets in the ratio of 80 : 20. Hence,
overall, the data consisting of 177,098 rows is split in the
ratio 64 : 20 : 16, corresponding to train, test, and validation
splits respectively. Further, given the data has a high degree
of very large outliers due to the incorporated stress tests, and
the scales vastly vary for each of the features depending on
the category of raw metric, we use a non-linear transformation
method to transform the very skewed nature of this dataset and
map it to a uniform distribution in [0, 1]. This pre-processing
is done via a Quantile Transformer, and this makes it suitable
for learning by neural network methodologies.

For model training, we use Binary Cross-entropy (BCE)
as the loss function to be minimized— a probabilistic loss
function that computes the cross-entropy loss between true
and predicted labels, and is appropriate for use in a binary
classification based setup. Further, we use Nadam as the op-
timizer for its computational efficiency and adaptive learning,
with its default learning rate of 10−3. ReLu (Rectified Linear
Unit) is used as the activation function for each of the dense
hidden layers due to its computational simplicity and high
optimization performance in a multi-layer perceptron (MLP)
based setup [30]. For the LSTM layers, we use the default
tensorflow initializations for weights, activation, and bias. As
mentioned earlier, we use sigmoid as the activation function
for the output layer to concurrently output the individual
probability of each label’s association with the input data
instance, thus supporting multi-label classification outputs.

We used a grid search based methodology to arrive at
the best configuration for the number of neurons/ LSTM
units in each hidden layer as applicable, and to adjust all
hyperparameters. To control overfitting as the model gains
complexity, we apply the dropout regularization factor of 0.2
between all hidden layers. On the LSTM layers, we also

Dense LSTM Residual LSTM Residual LSTM Seq0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
AE

 (a
ve

ra
ge

d
ov

er
 a

ll
tim

es
 a

nd
 o

ut
pu

ts
)

Validation Set Performance
Test Set Performance

Fig. 3: Performance (MAE) of Residual LSTM models evalu-
ated on their forecasting component against standard method-
ologies, when configured with the same wide model architec-
ture.

applied a recurrent dropout of 0.4. To further control the degree
of overfitting during training, we perform a grid search for the
optimal choice of weight regularization hyperparameters for all
the hidden layers, and based on the results, apply both L1 and
L2 (ElasticNet) weight regularization on each of the hidden
layers. The regularization factor was set to 10−6 for the LSTM
models, and 10−5 for the dense feed-forward neural network
models.

The batch size for each window was set to 64. While we set
the maximum training epochs to 100, we also deploy an early
stopping criteria that tracks the macroaveraged AUC-PRC
(interpolated average precision) with a maximization objective,
and a patience of 10 epochs to ensure that the training is not
stopped at a local optimization minima. At the end of training,
model weights are restored from the best epoch, which is
considered as the best performance achieved during training,
before the model began to overfit on the training set.

VI. RESULTS AND DISCUSSION

Figure 3 presents an evaluation of Residual LSTM models
against standard methods, when configured with the same
wide model architecture (2048 neurons/LSTM units), and
implemented purely as a forecasting component. The LSTM
architecture when supplemented with residual connections has
a clear advantage with the nature of the use-case here, both
when the output horizon is forecast at the last time-step after
going through all inputs, or sequentially. The latter among

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

787

Lin
ea

r

De
ns

e
1

De
ns

e
2

De
ns

e
3

LS
TM

Re
sid

ua
l L

ST
M

 1

Re
sid

ua
l L

ST
M

 2

Re
sid

ua
l L

ST
M

 3

Re
sid

ua
l L

ST
M

 4

Re
sid

ua
l L

ST
M

 5

Re
sid

ua
l L

ST
M

 6

Re
sid

ua
l L

ST
M

 7

Re
sid

ua
l L

ST
M

 S
eq

 1

Re
sid

ua
l L

ST
M

 S
eq

 2

Re
sid

ua
l L

ST
M

 S
eq

 3

Re
sid

ua
l L

ST
M

 S
eq

 4

Re
sid

ua
l L

ST
M

 S
eq

 5

0.90

0.91

0.92

0.93

0.94

0.95

Pr
ec

isi
on

 a
t R

ec
al

l=
0.

5
(a

ve
ra

ge
d

ov
er

 a
ll

tim
es

 a
nd

 o
ut

pu
ts

) Test Set Performance

(a) Precision at Recall=0.5

Lin
ea

r

De
ns

e
1

De
ns

e
2

De
ns

e
3

LS
TM

Re
sid

ua
l L

ST
M

 1

Re
sid

ua
l L

ST
M

 2

Re
sid

ua
l L

ST
M

 3

Re
sid

ua
l L

ST
M

 4

Re
sid

ua
l L

ST
M

 5

Re
sid

ua
l L

ST
M

 6

Re
sid

ua
l L

ST
M

 7

Re
sid

ua
l L

ST
M

 S
eq

 1

Re
sid

ua
l L

ST
M

 S
eq

 2

Re
sid

ua
l L

ST
M

 S
eq

 3

Re
sid

ua
l L

ST
M

 S
eq

 4

Re
sid

ua
l L

ST
M

 S
eq

 5

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

AU
C

(a
ve

ra
ge

d
ov

er
 a

ll
tim

es
 a

nd
 o

ut
pu

ts
)

Test Set Performance

(b) AUC-ROC
Lin

ea
r

De
ns

e
1

De
ns

e
2

De
ns

e
3

LS
TM

Re
sid

ua
l L

ST
M

 1

Re
sid

ua
l L

ST
M

 2

Re
sid

ua
l L

ST
M

 3

Re
sid

ua
l L

ST
M

 4

Re
sid

ua
l L

ST
M

 5

Re
sid

ua
l L

ST
M

 6

Re
sid

ua
l L

ST
M

 7

Re
sid

ua
l L

ST
M

 S
eq

 1

Re
sid

ua
l L

ST
M

 S
eq

 2

Re
sid

ua
l L

ST
M

 S
eq

 3

Re
sid

ua
l L

ST
M

 S
eq

 4

Re
sid

ua
l L

ST
M

 S
eq

 5
0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Sp
ec

ifi
cit

y
at

 S
en

sit
iv

ity
=0

.5
 (a

ve
ra

ge
d

ov
er

 a
ll

tim
es

 a
nd

 o
ut

pu
ts

)

Test Set Performance

(c) Specificity at Sensitivity=0.5

Fig. 4: Performance benchmarking of the varied model architectures and configurations, evaluated within each category.

them, however, has a higher Mean Absolute Error (MAE) due
to the fact that the model architecture was wide, and sequential
outputs of LSTM layers work best when layers need to be
stacked in a deeper model.

Figure 4 shows the performance benchmarking of the varied
model architectures and configurations as evaluated during
grid search. Generally, models that leverage residual connec-
tions perform better in almost all model configurations when
tested against standard methods. Table I presents the clas-
sification and regression performance metrics for the model
architecture that performed best among those tested with each
category of models on the test set data windows. The linear
model makes linear projections based on the input window,
and was used as a baseline to compare all models. With an
area under the receiver operating characteristic (AUC-ROC)
value of 0.5, it has the skill level of a random classifier. The
results demonstrate the suitability of Residual LSTM based
architectures against all other, on almost all metric categories
in both evaluation groups. The Residual LSTM approach
achieves an improvement of 31.1% over the baseline on the

forecast classification accuracy, 127.28% on the interpolated
average precision, and 61.64% on the AUC-ROC. It also
showed a 0.63% increase in precision over the standard LSTM
methodology, a 2.65% improvement on AUC-PRC, and 2.39%
improvement on the AUC-ROC.

Further, given the use-case and the nature of the data, wide
model architectures for LSTM demonstrate an edge over deep
architectures. While adding more LSTM units in a layer tends
to increase the chances of overfitting, we tackled those with
appropriate regularization as applicable, as mentioned in the
preceding section.

VII. CONCLUSION AND FUTURE WORK

In this work, we compose a multivariate time-series fore-
casting model that forecasts the evolution of system monitor-
ing features for the Clearwater VNF over the next 4 time steps,
followed by a multi-label classification model that predicts
the individual categories of SLO violations at each step over
a 2 minute future horizon. We demonstrate the suitability of
a Residual LSTM model over other MLP and LSTM based

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

788

methodologies in such a scenario that involves fine-grained
rapid forecasting, and reason that the high level of granularity
in predicting SLOs as multi-label outputs would help ensure
a balance in precise provisioning while maintaining reliability
in latency-critical NFV applications.

The methodology is transferable to other verticals within
the high-availability network slice, and in or future work we
plan to validate this on a different use-case. We also plan to
extend the deployment to a bigger test-bed setup, aiming to
incorporate the external network features by setting up the
SDN block, and distributed application scenarios.

REFERENCES

[1] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The Road
Towards 6G: A Comprehensive Survey,” IEEE Open Journal of the
Communications Society, vol. 2, pp. 334–366, 2021.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and Re-
search Challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[3] T. Zhang, H. Qiu, L. Linguaglossa, W. Cerroni, and P. Giaccone, “NFV
Platforms: Taxonomy, Design Choices and Future Challenges,” IEEE
Transactions on Network and Service Management, vol. 18, pp. 30–48,
Mar. 2021.

[4] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tambasco,
“IP Multimedia Subsystem in a containerized environment: availability
and sensitivity evaluation,” in 2019 IEEE Conference on Network
Softwarization (NetSoft), (Paris, France), pp. 42–47, IEEE, June 2019.

[5] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-Aware Prediction of Virtual Network Function Resource Re-
quirements,” IEEE Transactions on Network and Service Management,
vol. 14, pp. 106–120, Mar. 2017.

[6] N. Jalodia, S. Henna, and A. Davy, “Deep Reinforcement Learning for
Topology-Aware VNF Resource Prediction in NFV Environments,” in
2019 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), (Dallas, TX, USA), pp. 1–5, IEEE, Nov.
2019.

[7] S. Cherrared, S. Imadali, E. Fabre, and G. Goessler, “LUMEN: A global
fault management framework for network virtualization environments,”
in 2018 21st Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN), (Paris), pp. 1–8, IEEE, Feb. 2018.

[8] J. Suomalainen, A. Juhola, S. Shahabuddin, A. Mammela, and I. Ah-
mad, “Machine Learning Threatens 5G Security,” IEEE Access, vol. 8,
pp. 190822–190842, 2020.

[9] L.-V. Le, D. Sinh, B.-S. P. Lin, and L.-P. Tung, “Applying Big Data,
Machine Learning, and SDN/NFV to 5G Traffic Clustering, Forecasting,
and Management,” in 2018 4th IEEE Conference on Network Softwariza-
tion and Workshops (NetSoft), (Montreal, QC), pp. 168–176, IEEE, June
2018.

[10] A. A. Gebremariam, M. Usman, and M. Qaraqe, “Applications of
Artificial Intelligence and Machine Learning in the Area of SDN
and NFV: A Survey,” in 2019 16th International Multi-Conference on
Systems, Signals & Devices (SSD), (Istanbul, Turkey), pp. 545–549,
IEEE, Mar. 2019.

[11] J. Vergara-Reyes, M. C. Martinez-Ordonez, A. Ordonez, and O. M.
Caicedo Rendon, “IP traffic classification in NFV: A benchmarking
of supervised Machine Learning algorithms,” in 2017 IEEE Colombian
Conference on Communications and Computing (COLCOM), (Carta-
gena), pp. 1–6, IEEE, Aug. 2017.

[12] G. Ilievski and P. Latkoski, “Efficiency of Supervised Machine Learning
Algorithms in Regular and Encrypted VoIP Classification within NFV
Environment,” Radioengineering, vol. 29, pp. 243–250, Apr. 2020.

[13] D. Ferreira, A. Braga Reis, C. Senna, and S. Sargento, “A Forecasting
Approach to Improve Control and Management for 5G Networks,” IEEE
Transactions on Network and Service Management, vol. 18, pp. 1817–
1831, June 2021.

[14] J. Bendriss, I. G. Ben Yahia, and D. Zeghlache, “Forecasting and
anticipating SLO breaches in programmable networks,” in 2017 20th
Conference on Innovations in Clouds, Internet and Networks (ICIN),
(Paris), pp. 127–134, IEEE, Mar. 2017.

[15] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep Learning for Net-
work Traffic Monitoring and Analysis (NTMA): A Survey,” Computer
Communications, vol. 170, pp. 19–41, Mar. 2021.

[16] F. Wei, G. Feng, Y. Sun, Y. Wang, and S. Qin, “Proactive Network
Slice Reconfiguration by Exploiting Prediction Interval and Robust Op-
timization,” in GLOBECOM 2020 - 2020 IEEE Global Communications
Conference, (Taipei, Taiwan), pp. 1–6, IEEE, Dec. 2020.

[17] A. Binsahaq, T. R. Sheltami, and K. Salah, “A Survey on Autonomic
Provisioning and Management of QoS in SDN Networks,” IEEE Access,
vol. 7, pp. 73384–73435, 2019.

[18] C. Sun, J. Bi, Z. Zheng, and H. Hu, “SLA-NFV: an SLA-aware
High Performance Framework for Network Function Virtualization,” in
Proceedings of the 2016 ACM SIGCOMM Conference, (Florianopolis
Brazil), pp. 581–582, ACM, Aug. 2016.

[19] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive sur-
vey of Network Function Virtualization,” Computer Networks, vol. 133,
pp. 212–262, Mar. 2018.

[20] E. Kapassa, M. Touloupou, and D. Kyriazis, “SLAs in 5G: A Complete
Framework Facilitating VNF- and NS- Tailored SLAs Management,”
in 2018 32nd International Conference on Advanced Information Net-
working and Applications Workshops (WAINA), (Krakow), pp. 469–474,
IEEE, May 2018.

[21] I. G. Ben Yahia, J. Bendriss, A. Samba, and P. Dooze, “CogNitive 5G
networks: Comprehensive operator use cases with machine learning for
management operations,” in 2017 20th Conference on Innovations in
Clouds, Internet and Networks (ICIN), (Paris), pp. 252–259, IEEE, Mar.
2017.

[22] J. Bendriss, I. G. Ben Yahia, P. Chemouil, and D. Zeghlache, “AI for
SLA Management in Programmable Networks,” in DRCN 2017 - Design
of Reliable Communication Networks; 13th International Conference,
pp. 1–8, 2017.

[23] M. Boucadair, C. Jacquenet, and X. Xu, eds., Emerging Automation
Techniques for the Future Internet:. Advances in Wireless Technologies
and Telecommunication, IGI Global, 2019.

[24] J. Bendriss, Cognitive management of SLA in software-based networks.
Theses, Institut National des Télécommunications, June 2018. Issue:
2018E0003.

[25] J. Bendriss, I. G. Ben Yahia, and D. Zeghlache, “Forecasting and
anticipating SLO breaches in programmable networks,” in 2017 20th
Conference on Innovations in Clouds, Internet and Networks (ICIN),
(Paris), pp. 127–134, IEEE, Mar. 2017.

[26] D. Xu, Y. Shi, I. W. Tsang, Y.-S. Ong, C. Gong, and X. Shen, “Survey
on Multi-Output Learning,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–21, 2019.

[27] N. Jalodia, M. Taneja, and A. Davy, “A Deep Neural Network-Based
Multi-Label Classifier for SLA Violation Prediction in a Latency Sen-
sitive NFV Application,” IEEE Open Journal of the Communications
Society, vol. 2, pp. 2469–2493, 2021.

[28] B. Beyer, C. Jones, J. Petoff, and N. Murphy, Site Reliability En-
gineering: How Google Runs Production Systems. O’Reilly Media,
Incorporated, 2016.

[29] “3GPP - The 3rd Generation Partnership Project, A Global Initiative.”
https://www.3gpp.org/, accessed May 2021.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[31] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, pp. 1735–1780, Nov. 1997.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” arXiv:1512.03385 [cs], Dec. 2015. arXiv: 1512.03385.

[33] J. Kim, M. El-Khamy, and J. Lee, “Residual LSTM: Design of
a Deep Recurrent Architecture for Distant Speech Recognition,”
arXiv:1701.03360 [cs], June 2017. arXiv: 1701.03360.

[34] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015.

[35] F. Chollet and others, Keras. 2015.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

789

